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The non-linear transient analysis of the shear deformable laminated composite plates,
subjected to step, ramp and sinusoidal loading is presented. The clamped, simply supported,
free and their combinations (non-Levy type) of boundary conditions are considered. The
formulation is based on the Mindlin "rst order shear deformation theory and von-Karman
non-linearity. The methodology of the solution is based on the Chebyshev series technique.
Houbolt time marching scheme and quadratic extrapolation technique are used for the
temporal discretization and linearization respectively. The e!ects of magnitude and duration
of loading, rotary inertia, in-plane, inertia, b/a, a/h, lamination scheme and boundary
conditions on the central displacement response are studied. Typical results are presented in
dimensionless graphical forms for di!erent parameters and loading conditions.
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1. INTRODUCTION

The applications of laminated composite plates have increased manifold in the aerospace,
aircraft and automobile industries. The dynamic behaviour of these structural elements at
large amplitudes of motion in response to the conditions they are subjected to, have
received considerable attention in the recent past. A comprehensive survey of non-linear
vibration analysis of plates using approximate analytical and "nite-element methods
(FEMS) is presented by Sathyamoorthy [1]. There is an excellent review on the vibrations
of plates due to Yamada and Irie [2]. Reddy [3] carried out the geometrically non-linear
transient analysis of laminated composite plates undergoing moderately large deformations
using FEM and the e!ects of plate thickness, lamination scheme, boundary conditions
and loading on the de#ections and stresses were investigated. Incorporating the generalized
non-linearity, Bhimaraddi [4] studied the non-linear free vibration of simply supported
shear deformable composite laminated plates using a regular perturbation technique
and concluded that the formulation based on von-Karman-type non-linearity is quite
satisfactory. The large amplitude-free vibration analysis of composite simply supported
plate, using a multimode time-domain modal formulation based on the FEM is carried out
by Shi et al. [5]. Employing von-Karman-type non-linearity, Carerra and Krause [6]
studied dynamics of multi-layered thick plates using FEA with Newmark time-integration
method. E!ects of di!erent geometries, loading conditions and layouts on the response are
analyzed and it is found that in the case of unsymmetrically laminated plates, the linear
0022-460X/01/430509#18 $35.00/0 ( 2001 Academic Press
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solution overestimates or underestimates the non-linear results, depending on both the
magnitude and type of the applied loading. Cheng et al. [7] studied the in#uence of
transverse shear, rotary inertia and coupling of modes on the non-linear frequency of
moderately thick rectangular plates and sandwich plates using harmonic balance and mixed
Fourier series method. It is shown that the e!ect of rotatory inertia is of less importance and
the non-linear fundamental frequency increases with the central amplitude (hardening type
of non-linearity). Khdeir and Reddy [8] employed generalized Levy-type solutions with the
state-space concept for the free vibration behaviour of cross-ply and antisymmetric
angle-ply laminated plates and concluded that all shear deformation theories ("rst order,
second order, third order) give matching frequencies for thick laminates, di!erent from
those of classical theory. Tuomala and Mikkola [9] used FEM to obtain the transient
response of plates subjected to impulsive loading, taking into account the in#uences of
geometry changes and material non-linearities. Non-linear oscillatory behaviour of
unsymmetrical laminated plates is investigated by Singh and Rao [10] using FEM and
employing four-node shear #exible composite plate element with six-degrees-of-freedom per
node. The spectral analysis was used by Kadiri et al. [11] to obtain the second non-linear
mode of a fully clamped rectangular plate and they concluded that the non-linear mode
shows a higher bending stress close to the clamps at large de#ections, compared with that
predicted by linear theory.

The computational power of numerical methods such as the FEM and the
"nite-di!erence method is well established for complicated loading and geometry. These
numerical methods are employed as a necessity because it is extremely di$cult to
solve analytically, the non-linear equations of motion of moderately thick laminated
plate subjected to transient loading. For obtaining the global response of these structures
with regular boundaries, analytical methods may turn out to be superior to numerical
methods. Hence, there is a need to develop and explore the possibility of using analytical
techniques for non-linear problems of laminated composite plates with non-classical
edge restraints. The analytical technique used so far is applicable only to Levy-type
boundary conditions. In the present paper, an attempt is made to employ the
fast-converging double Chebyshev series for the non-linear analysis of moderately
thick shear deformable laminated composite rectangular plates with non-classical
boundary conditions, subjected to transient loadings. Kapania and Lovejoy [12] employed
the Chebyshev series for the estimation of linear frequency and mode shapes of
laminated quadrilateral plates. Nath and Sandeep [13] used Chebyshev polynomials
for the non-linear static and dynamic analysis of thin rectnagular isotropic plates,
employing Kirchho!'s hypothesis. Recently, the present authors [14] employed the
double Chebyshev series for the non-linear static analysis of moderately thick laminated
composite plates with di!erent boundary conditions employing von-Karman-type
kinematics.

In the present paper, the formulation is based on the von-Karman-type kinematics
and "rst order shear deformation theory. The governing non-linear-coupled partial
di!erential equations of motion are linearized by quadratic extrapolation technique.
The double Chebyshev series and Houbolt time-marching scheme are used for spatial
and temporal discretizations respectively. Convergence study was carried out and the
results were validated with some of the published results. Laminated plates with di!erent
boundary conditions, consisting of clamped, simply supported, free and their combinations
are considered under step functions, ramp and sinusoidal loading respectively. The
e!ects of in-plane inertia, rotary inertia, aspect ratio, span-to-thickness ratio and lamination
scheme on the large amplitude response are studied. Some typical results are reported
here.



Figure 1. Geometry of laminated plate.
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2. MATHEMATICAL FORMULATION

2.1. GOVERNING EQUATIONS

Figure 1 shows the geometry of the plate. Perfect bonding between the orthotropic layers
is assumed. The displacement "eld at a point in the laminate is expressed as

; (x, y, z)"u
0
(x, y)#zt

x
(x, y),

<(x, y, z)"v
0
(x, y)#zt

y
(x, y),

=(x, y, z)"w
0
(x, y). (1)

Based on the von-Karman-type non-linearity, the strain}displacement relations become
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The stress and moment resultants of a laminated composite rectangular plate having
n layers of orthotropic lamina can be expressed as
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where the laminate sti!ness coe$cients (A
ij
, B

ij
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ij
) are de"ned in terms of the reduced
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for the layers k"1, 2,2 , n [15] as
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where k2
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are shear correction factors [16].

Neglecting the body moments and surface shearing forces, the equations of motion [3]
reduce to
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where P, R and I are the normal, coupled normal rotary and rotary inertia coe$cients
respectively. They are de"ned as
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Using equations (2)}(6), equations (7)}(11) are transformed to the following
non-dimensional forms:
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The non-dimensional parameters, ¸
1
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2
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1
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2
,2 are given in Appendix A.

2.2. BOUNDARY CONDITIONS
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3. METHOD OF SOLUTION

A general function / (x, y) can be approximated in space domain by "nite-degree double
Chebyshev polynomial [17] as
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where
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where r and s are the order of derivatives with respect to x and y respectively. The derivative
function /rs
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is evaluated using the following recurrence relations [17]:

/rs
(i~1)j

"/rs
(i`1)j

#2i/(r~1)s
ij

, /rs
i (j~1)

"/rs
i (j`1)

#2j/r(s~1)
ij

. (20)

Non-linearity in the governing equations appears due to the product of the dependent
variables. The non-linear terms are linearized at any step of marching variable using
quadratic extrapolation technique. A typical non-linear function G at step J is expressed as
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During initial steps of marching variables, the coe$cients A, B, C of the quadratic
extrapolation scheme of linearization [13] take the following values:

1, 0, 0 (J"1), 2,!1, 0 (J"2), 3,!3, 1 (J*3).

The product of two Chebyshev polynomials is expressed as
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The displacement functions and loading are approximated by "nite-degree Chebyshev
polynomials as
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Implicit Houbolt time-marching method [18] is used to evaluate the acceleration terms
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Houbolt coe$cients b
i
(i"1, 5) can be evaluated during initial steps by using recurrence

relations [18] and are given in Appendix B.
Using the above procedure of spatial discretization, linearization and temporal

discretization, the non-linear di!erential equations (13)}(17) are discretized in space and
time domains respectively. The set of generating linear algebraic equations becomes
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Similarly, the appropriate set of boundary conditions are also discretized.



TABLE 1

Convergence study of [0/90/0/90] square plate (b"10, Q"50)

Space-wise convergence (Dq"0)1)

Centre

Boundary conditions M, N w (max) q M
x

(max) q

CSCS 6 0)516899 11)2 2)52769 9)7
7 0)493602 11)2 2)39125 9)8
8 0)499053 11)4 2)29421 10)4
9 0)497812 11)4 2)28463 10)3

10 0)492611 11)1 2)36994 9)9
11 0)492311 11)1 2)35379 9)9

CCCF 6 0)473765 12)6 2)12140 9)9
7 0)463553 12)2 1)97009 9)9
8 0)466490 12)0 1)98126 10)4
9 0)467887 11)9 1)94334 10)5

10 0)464364 12)1 1)98674 9)9
11 0)464456 12)2 1)95503 10)0

Time-wise convergence (M"N"9)

Centre

Boundary conditions Dq w (max) q M
x

(max) q

CSCS 0)2 0)474231 11)6 2)28616 10)4
0)1 0)497812 11)4 2)28463 10)3
0)05 0)497660 11)3 2)27933 10)6

CCCF 0)2 0)468474 12)2 1)895166 10)8
0)1 0)467887 11)9 1)94334 10)5
0)05 0)467853 11)85 1)922414 10)75
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The total number of unknown coe$cients in equation (23) are 5(M#1) (N#1).
Collocating the zeros of Chebyshev polynomials, 5(M!1)(N!1) algebraic equations are
generated from equation (25). Similarly, the SSSS, CSCS, CCCF, CCFF boundary
conditions generate (10M#10N#16), (10M#10N#18), (10M#10N#15) and
(10M#10N#10) algebraic equations respectively. It is clear that the total number of
equations is more than the unknown coe$cients. In order to have a compatible solution,
the multiple regression analysis [14] based on the least-squares error norms is used. The
non-linear terms are transferred to the right side and computed at each step of marching
variable. The left-side matrix consists of linear terms and hence remains invariant with
respect to the marching variable. The set of linear equations are expressed in matrix form as

[A] MaN"MQN, (26)

where [A] is the (M]N) coe$cient matrix, MaN is the (N]1) displacement vector and MQN is
the (M]1) load vector. Multiple regression analysis [13] gives

MaN"([A]T [A])~1 [A]T MQN (27)



Figure 2. Comparison of central displacement response for simply supported thick isotropic square plate
(l"0)3, a/h"5) under step loading: **, present study; *}*, Reddy and Chandrashekhara [19].
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or

MaN"[B] MQN. (28)

The matrix [B] is evaluated once and retained for subsequent usage.

4. RESULTS AND DISCUSSION

In the present study the non-linear governing equations of motion of laminated
composite rectangular plates subjected to step, ramp and sinusoidal loading, respectively,
are solved using the fast-converging Chebyshev polynomials and Houbolt time-marching
scheme. In order to check the accuracy and stability of the method, convergence study was
conducted. It can be noted from Table 1 that 9}11 terms expansion of Chebyshev series and
an increment of 0)1 for time q are su$cient to yield quite accurate results. An iterative
methodology of solution with relative convergence criteria of 0)01% of each coe$cient at
every step is employed. The present methodology is validated with the results of Reddy and
Chandrshekhara [19], obtained using the FEM for a simply supported isotropic square
plate

(a"25 cm, h"5 cm, E"2)1]106N/cm2, l"0)25, o"8]10~6Ns2/cm4)

under uniformly distributed load and the comparison is shown in Figure 2.
The displacement response results of the laminated composite plate with non-Levy-type

boundary conditions, i.e., CCCF, CCFF and CSCS are presented for material properties
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Figure 3. Displacement response of anitsymmetric angle-ply [15/!15/15/!15] square CSCS plate (a/h"10)
under step loading: } }L } } , Q"375; *d**, Q"250.

Figure 4. E!ect of inertia on central displacement response for symmetrically laminated cross-ply [0/90/90/0]
square CCFF plate (a/h"10) under step loading: **, all inertia; *L*, in-plane#lateral, *n*, lateral.
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Figure 5. E!ect of inertia on central displacement response for unsymmetrically laminated angle-ply
[0/15/30/45] square CSCS plate (a/h"10) under step loading:**, all inertia;*L*, in-plane#lateral;*n*,
lateral.
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inertia, lamination scheme, aspect ratio, span-to-thickness ratio, boundary conditions,
magnitude and duration of the pulse loading on the transient response is analyzed.

The response of the antisymmetric angle-ply [15/!15/15/!15] square plate (a/h"10)
with CSCS boundary condition and subjected to step loadings Q"250 and 375 is plotted
in Figure 3. It is clear from the results that the magnitude and frequency of the non-linear
response increases with increase in step loading. This hardening-type behaviour is because
bending sti!ness of the plate increases with increase in lateral de#ection. The e!ects of
in-plane, lateral, coupled normal-rotary and rotary inertia on the central displacement
response have been investigated for cross-ply symmetrically laminated [0/90/90/0] square
CCFF plate (a/h"10, Q"150) and [0/15/30/45] unsymmetrically laminated angle-ply
square CSCS plates (a/h"10, Q"150) and are shown in Figures 4 and 5 respectively. It
can be observed that the in#uence of in-plane inertia and rotary inertia is insigni"cant.

The in#uence of b/a on the central displacement response of antisymmetric cross-ply
[0/90/0/90] laminated CCCF plate (a/h"10), under step load Q"200 is plotted in
Figure 6. Central response is minimum for b/a"0)5 and maximum for b/a"5)0. It is
interesting to note that de#ection response for b/a"2 and 3 is lower than that of b/a"1)5.
The in#uence of a/h on the central displacement response has been investigated and results
for antisymmetric cross-ply [0/90/0/90] CSCS square plate are shown in Figure 7 for step
loading Q"250. It is interesting to note that the maximum central de#ection is almost the
same for a/h"30, 40 and 50. It is due to the fact that for a/h '20, the plates belong to thin
plate category. The response is maximum for a/h"10 and there is a signi"cant di!erence as
compared to a/h"30. The time period increases with increase in a/h.

The in#uence of boundary conditions on the central response has been studied and
the results for four-layer cross-ply antisymmetric SSSS, CSCS, CCFF and CCCF plates are
plotted in Figure 8 for step load Q"125, a/h"10 and b/a"1. It can be observed that



Figure 6. E!ect of b/a on central displacement response for antisymmetric laminated cross-ply [0/90/0/90]
square CCCF plate (a/h"10) under step loading: b/a; * - -*, 0)5; -------, 1)0; } } } }, 1)5; *L*, 2)0; **, 3)0;
*K*, 5)0.

Figure 7. E!ect of a/h on the central displacement response for antisymmetric laminated cross-ply [0/90/0/90]
square CSCS plate under step loading: a/h; ***, 10; } } }, 20; * )*, 30; -------, 40; * --*, 50.
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Figure 8. E!ect of boundary conditions on central displacement response for antisymmetric laminated cross-
ply [0/90/0/90] square plate (a/h"10) under step loading: **, CCCF, } }} } , CCFF; ------, CSCS; * --*,
SSSS.
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the maximum response occurs for simply supported SSSS plate and the minimum for CSCS
plate. Also, it is interesting to note that the central response of CCFF plate is lesser than
SSSS plate in the "rst half-cycle and the reverse trend is observed in the next half-cycle. The
e!ects of lamination scheme on the transient response of CCCF square plate for a/h"10
and step load Q"100 are shown in Figure 9. The responses are lower for symmetric
[22)5/!22)5/!22)5/22)5] and antisymmetric [22)5/!22)5/22)5/!22)5] angle-ply plates
as compared to other lamination schemes. The response is higher for the unsymmetric
laminated plate [0/15/30/45]. The symmetric [0/90/90/0] and the antisymmetric
[0/90/0/90] cross-ply plates have the lowest frequencies. This is attributed to material
coupling coe$cients.

The in#uence of duration of step function and sinusoidal loading on the central response
has been studied. The results of the four-layer antisymmetric cross-ply CSCS plate
subjected to sinusoidal loading are shown in Figure 10 for pulse durations of 5 and 10
respectively. It is noted that transient-free response increases with the duration of the pulse.
The response for four-layer antisymmetric cross-ply CSCS square plate (a/h"10) subjected
to step loading to in"nite duration and ramp of pulse durations of 5 and 10 are shown in
Figure 11. The response of step loading for in"nite duration is higher and for ramp pulse of
duration 10 it is almost similar. The response of unsymmetric angle-ply [0/15/30/45] CSCS
square plate (a/h"10) is shown in Figure 12. It is interesting to observe that response to
step loading of in"nite duration and ¹

P
"5 have almost the same amplitude. Surprisingly,

the amplitude of response for ¹
P
"10 is less than that of ¹

P
"5. The response to sinusoidal

loading of duration ¹
P
"5 and 10 is also shown in this "gure for comparison purpose. The

amplitude of the response to a sinusoidal pulse of ¹
P
"5 duration is lowest and it is highest



Figure 9. E!ect of lamination schemes on central displacement response for square CCCF plate (a/h"10)
under step loading: **, [0/90/90/0]; **, [0/90/0/90]; ------, [0/15/30/45]; *L*, [$22)5/$22)5]; * -*,
[$22)5]

s
; * ) )*, [0/0/0/90].
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for ¹
P
"10. This observation is not in line with the common notion that step function

loading generates higher response as compared to sinusoidal pulses having the same
magnitude and duration.

5. CONCLUSIONS

Based on Chebyshev approximation, an analytical solution to the non-linear
transient analysis of moderately thick laminated composite plates with SSSS, CSCS,
CCCF and CCFF boundary conditions is presented. The e!ects of in-plane inertia,
rotary inertia and coupled normal-rotary inertia on the response are insigni"cant.
Central response is minimum for b/a"0)5 and maximum for b/a"5)0. The e!ect of
b/a on the response remains signi"cant up to b/a"1)5, beyond which there is
no appreciable di!erence in the response. The e!ect of a/h on the displacement response
is noticeable up to a/h"20 and beyond a/h"30 it has no signi"cant e!ect. The
central displacement response of unsymmetric laminate is higher for step, ramp
and sinusoidal loadings as compared to symmetric or antisymmetric laminate.
Transient-free response increases with increase in the duration of the pulse
loading. Response to a step loading is lower than that to sinusoidal loading. It
can be observed that the present method can be e$ciently applied for the
non-linear transient analysis of laminated composite plates with complicated boundary
conditions.



Figure 10. E!ect of duration of sinusoidal loading on central displacement response for antisymmetric
laminated cross-ply [0/90/0/90] square CSCS plate (a/h"10). :* --* , ¹

p
"5; } } } } , ¹

p
"10.

:*** , ¹
p
"5; -------, ¹

p
"10.

Figure 11. E!ect of step and ramp loadings on central displacement response for antisymmetric laminated
cross-ply [0/90/0/90] square CSCS plate (a/h"10). :** , : } } } , ¹

p
"10; --------, ¹

p
"5.
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Figure 12. E!ect of di!erent loadings (step, ramp and sinusoidal) on central displacement response for
antisymmetric laminated cross-ply [0/15/30/45] square CSCS plate (a/h"10). : ** . : *K*, 5;
*L* , 10. : } } } , 5; -----, 10. : *n* , 5; * - -* , 10.
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APPENDIX A: DEFINITION OF NON-DIMENSIONAL PARAMETERS
AND COEFFICIENTS
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APPENDIX B

HOUBOLT ACCELERATION COEFFICIENTS FOR STEP FUNCTION LOAD

Time step b
1

b
2

b
3

b
4

b
5

J"1 6 0 0 0 !2QDq2
J"2 2 !4 0 0 !QDq2
J"3 2 !5 4 0 0
J'3 2 !5 4 !1 0

HOUBOLT ACCELERATION COEFFICIENTS FOR SINUSOIDAL PULSE LOAD

Time step b
1

b
2

b
3

b
4

b
5

J"1 6 0 0 0 0
J"2 2 !4 0 0 0
J"3 2 !5 4 0 0
J'3 2 !5 4 !1 0

APPENDIX C: NOMENCLATURE

a, b, h plate dimensions
;, <, = displacements along X, > and Z directions
u
0
, v

0
, w

0
displacements of mid-plane

u, v, w non-dimensional displacements of mid-plane
e
x
, e

y
, c

xy
, c

xz
, c

yz
strain components

w
c
, Q, q non-dimensional central de#ection, load, time

t
x
, t

y
slopes in xz and yz plane respectively

M, N number of terms in Chebyshev series in x and y directions respectively
N

x
, N

y
, N

xy
stress resultants

M
x
, M

y
, M

xy
moment resultants

NM
x
, NM

y
, NM

xy
non-dimensional stress resultants

MM
x
, MM

y
, MM

xy
non-dimensional moment resultants

Q
x
, Q

y
shear forces

QM
x
, QM

y
non-dimensional shear forces

SSSS all edges simply supported
CSCS two adjacent edges (x"!1 and y"1) clamped and two edges (x"#1 and

y"!1) simply supported
CCCF three edges (x " $1 and y"1) clamped and one edge (y"!1) free
CCFF two opposite edges (x"$1) clamped and two edges (y"$1) free
¹(x), ¹(y) Chsebyshev polynomials
( ), comma denotes the di!erentiation with respect to the variables that follow
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